In a 500-meter race, B starts 50 meters ahead of A, yet A defeats B by a margin of 25 meters. What distance did B cover when A reached the finish line?
A
400 meters
B
425 meters
C
420 meters
D
475 meters
উত্তরের বিবরণ
Question: In a 500-meter race, B starts 50 meters ahead of A, yet A defeats B by a margin of 25 meters. What distance did B cover when A reached the finish line?
Solution:
500 মিটার রেসে B 50 মিটার এগিয়ে থেকে দৌড় শুরু করায় B কে দূরত্ব অতিক্রম করতে হবে = (500 - 50) মিটার = 450 মিটার
A এর অতিক্রান্ত দূরত্ব = 500 মিটার
কিন্তু A, B-কে 25 মিটার দূরত্বে পরাজিত করে।
∴ A যখন শেষপ্রান্ত স্পর্শ করে তখন B এর অতিক্রান্ত দূরত্ব = (450 - 25) মিটার = 425 মিটার

0
Updated: 5 days ago
A train running at a certain speed crosses a 496-meter-long platform in 56 seconds. If the length of the train is 560 meters, how long will it take to cross a bridge that is 100 meters in length?
Created: 5 days ago
A
21 seconds
B
27 seconds
C
28 seconds
D
35 seconds
Question: A train running at a certain speed crosses a 496-meter-long platform in 56 seconds. If the length of the train is 560 meters, how long will it take to cross a bridge that is 100 meters in length?
Solution:
We know,
When a train crosses any object, it covers a distance equal to the sum of the object's length and its own length.
So, when crossing a platform, the distance covered by the train = (496 + 560) meters = 1056 meters
And
when crossing a bridge, the distance covered by the train = (100 + 560) meters = 660 meters
Now,
The train covers 1056 meters in = 56 seconds
∴ It covers 1 meter in = (56/1056) seconds
∴ It covers 660 meters in = (56 × 660)/1056 seconds = 35 seconds

0
Updated: 5 days ago
A jar contains a mixture of oil and water in the ratio 7 : 5. If 9 liters of the mixture is removed and replaced with the same amount of water, the new ratio becomes 7 : 9 . What was the initial quantity of oil in the jar?
Created: 5 days ago
A
10 liters
B
20 liters
C
21 liters
D
25 liters
Question: A jar contains a mixture of oil and water in the ratio 7 : 5. If 9 liters of the mixture is removed and replaced with the same amount of water, the new ratio becomes 7 : 9 . What was the initial quantity of oil in the jar?
Solution:
ধরি,
শুরুতে জারের মধ্যে তেলের পরিমাণ = 7x লিটার
পানির পরিমাণ = 5x লিটার
∴ মোট অংশ = 12x
9 লিটার মিশ্রণ ফেলে দিলে,
ফেলে দেওয়া মিশ্রণে তেলের পরিমাণ = 9 এর (7x/12x) = 21/4 লিটার
এবং পানির পরিমাণ = 9 এর (5x/12x) = 15/4 লিটার
বাকি মিশ্রণে,
তেলের পরিমাণ = 7x - (21/4) = (28x - 21)/4
পানির পরিমাণ = 5x - (15/4) = (20x - 15)/4
মিশ্রণে 9 লিটার পানি যোগ করা হলে পানির নতুন পরিমাণ = {(20x - 15)/4} + 9 = (20x - 15 + 36)/4 = (20x + 21)/4
প্রশ্নমতে,
{(28x - 21)/4}/{(20x + 21)/4} = 7/9
⇒ (28x - 21)/(20x + 21) = 7/9
⇒ 9(28x - 21) = 7(20x + 21)
⇒ 252x - 189 = 140x + 147
⇒ 252x - 140x = 189 + 147
⇒ 112x = 336
⇒ x = 336/112
⇒ x = 3
∴ শুরুতে মিশ্রণে তেলের পরিমাণ ছিলো = (7 × 3) লিটার = 21 লিটার

0
Updated: 5 days ago
A sum of money is to be divided among P, Q, R, S in the ratio 7 : 3 : 5 : 2. If R gets Tk. 2000 more than S, what is Q's share?
Created: 5 days ago
A
TK. 2000
B
TK. 2200
C
TK. 2500
D
TK. 3000
Step 1: Let the shares of P, Q, R, S be proportional to 7 : 3 : 5 : 2
Let the common multiple be . Then:
-
P =
-
Q =
-
R =
-
S =
Step 2: Use the information given about R and S
Step 3: Find Q's share
Answer: Q's share = Tk. 2000

0
Updated: 5 days ago