loga(b4) = 4c এবং logb(a4)
= 4d হলে, cd = কত?
A
0
B
1
C
3
D
4
উত্তরের বিবরণ
সমাধান:
loga(b4) = 4c
⇒ 4 × loga(b) = 4c [logn(mk) = k logn(m)]
⇒ loga(b) = c
আবার,
logb(a4) = 4d
⇒ 4 × logb(a) = 4d
⇒ logb(a) = d
∴ cd = loga(b) × logb(a)
⇒ cd = 1 ;[logn(m) × logm(n) = 1]

0
Updated: 2 months ago
log3(1/81) = কত?
Created: 1 week ago
A
27
B
9
C
- 4
D
1/4
সমাধান:
log3(1/81)
= log3(1/34)
= log3(3- 4)
= - 4 × log33 [loga(mn) = n . logam]
= - 4 × 1 [logaa = 1]
= - 4

0
Updated: 1 week ago
Created: 1 week ago
A
0.25
B
0.018
C
0.09
D
0.08

0
Updated: 1 week ago
log√381 কত?
Created: 1 month ago
A
4
B
27√3
C
8
D
1/8
প্রশ্ন: log√381 কত?
সমাধান:
log√381
= log√334
= log√3{(√3)2}4
= log√3(√3)8
= 8log√3√3
= 8 × 1
= 8

0
Updated: 1 month ago