করিম একটি কাজ রহিমের চেয়ে ৬০ দিন কম সময়ে করতে পারে। করিমের কাজের গতি যদি রহিমের কাজের গতির ৩ গুণ হয় তবে করিম একা ঐ কাজ কতদিনে শেষ করতে পারবে?
A
১৫
B
২১
C
৩০
D
কোনোটিই নয়
উত্তরের বিবরণ
0
Updated: 5 days ago
Rahim and Karim can finish a work together in 6 hours. If Rahim takes 3 times as long as Karim to finish the job alone, how long will Karim take to finish the job alone?
Created: 2 months ago
A
9 hours
B
8 hours
C
12 hours
D
15 hours
Question: Rahim and Karim can finish a work together in 6 hours. If Rahim takes 3 times as long as Karim to finish the job alone, how long will Karim take to finish the job alone?
Solution:
ধরি, করিম একা কাজটি শেষ করতে সময় নেয় = x ঘন্টা
রহিম একা কাজটি শেষ করতে সময় নেয় = 3x ঘন্টা
এখন,
করিমের 1 ঘন্টার কাজের পরিমাণ = 1/x অংশ
রহিমের 1 ঘন্টার কাজের পরিমাণ = 1/(3x) অংশ
তারা একসাথে 1 ঘন্টায় কাজ করতে পারে = (1/x) + 1/(3x)
= (3+1)/(3x)
= 4/(3x) অংশ
একসাথে কাজটি শেষ করতে সময় লাগে = 6 ঘন্টা
অর্থাৎ, 6 ঘন্টায় তারা পুরো 1টি কাজ শেষ করে
তাহলে,
(4/3x) × 6 = 1
⇒ 24/(3x) = 1
⇒ 8/x = 1
⇒ x = 8
∴ করিমের কাজটি একা শেষ করতে 8 ঘন্টা সময় লাগবে।
0
Updated: 2 months ago
A can complete a work in 20 days, B in 30 days, and C in 60 days. A stops working 4 days before the completion of the work, and B stops 6 days before completion. C continues working alone till the end. What was the total number of days taken to complete the entire work?
Created: 2 months ago
A
10 days
B
14 days
C
18 days
D
21 days
Question: A can complete a work in 20 days, B in 30 days, and C in 60 days. A stops working 4 days before the completion of the work, and B stops 6 days before completion. C continues working alone till the end. What was the total number of days taken to complete the entire work?
Solution:
Let the total work be completed in y days.
∴ A worked for (y - 4) days
So his contribution = (y - 4)/20
B worked for (y - 6) days
So his contribution = (y - 6)/30
C worked full y days, so his contribution = y/60
Therefore,
(y - 4)/20 + (y - 6)/30 + y/60 = 1
⇒ 3(y - 4) + 2(y - 6) + y = 60
⇒ 3y - 12 + 2y - 12 + y = 60
⇒ 6y - 24 = 60
⇒ 6y = 84
⇒ y = 14
∴ The total work was completed in 14 days.
0
Updated: 2 months ago
If P and Q together can complete a piece of work in 16 days and P alone in 24 days, in how many days can Q alone complete the work?
Created: 2 months ago
A
72 days
B
48 days
C
42 days
D
36 days
Question: If P and Q together can complete a piece of work in 16 days and P alone in 24 days, in how many days can Q alone complete the work?
Solution:
P and Q complete a work in = 16 days
One day's work of (P + Q) = 1/16
P complete the work in = 24 days;
One day's work of P = 1/24
Then, Q's one day's work = (1/16) - (1/24)
= (3 - 2)/48
= 1/48
So, Q alone can complete the work in = 48 days.
0
Updated: 2 months ago