কোনো সমান্তর ধারার mতম পদ n এবং n তম পদ m হলে, ধারাটির সাধারণ অন্তর কত?
A
n/m
B
2
C
- 1
D
m/n
উত্তরের বিবরণ
সমাধান:
কোনো সমান্তর ধারার ১ম পদ = a
সাধারণ অন্তর = d
আমরা জানি,
m তম পদ = a + (m - 1)d
⇒ n = a + md - d
∴ a + md - d = n .......................(1)
আবার,
n তম পদ = a + (n - 1)d
⇒ m = a + nd - d
∴ a + nd - d = m...................(2)
(1) নং থেকে (2) নং বিয়োগ করে পাই
⇒ a + md - d - (a + nd - d)= n - m
⇒ a + md - d - a - nd + d = n - m
⇒ md - nd = n - m
⇒ d(m - n) = n - m
⇒ d = - 1(m - n)/(m - n)
∴ d = - 1
সুতরাং, সাধারণ অন্তর - 1
0
Updated: 1 month ago
13 + 20 + 27 + 34 +..................+ 118 ধারাটির পদ সংখ্যা কত?
Created: 1 month ago
A
12
B
15
C
18
D
16
সমাধান:
দেওয়া আছে,
ধারাটির প্রথম পদ, a = 13
সাধারণ অন্তর, d = 20 - 13 = 7
ধরি,
পদসংখ্যা = n
এবং n-তম পদ = 118
আমরা জানি,
n-তম পদ = a + (n - 1)d
সুতরাং,
a + (n - 1)d = 118
⇒ 13 + (n - 1)7 = 118
⇒ 13 + 7n - 7 = 118
⇒ 7n + 6 = 118
⇒ 7n = 118 - 6
⇒ 7n = 112
⇒ n = 112/7
⇒ n = 16
অর্থাৎ ধারাটির পদসংখ্যা = 16
0
Updated: 1 month ago
কোন সমান্তর ধারার m তম পদ n ও n তম পদ m হলে, ধারাটির সাধারণ অন্তর কত?
Created: 1 month ago
A
0
B
2
C
- 2
D
কোনটিই নয়
সমাধান:
মনে করি,
সমান্তর ধারার প্রথম পদ = a
সাধারণ অন্তর = d
১ম শর্তমতে,
m তম পদ a + (m - 1)d = n
বা, a + md - d = n .......................(1)
২য় শর্তমতে,
n তম পদ a + (n - 1)d = m
বা, a + nd - d = m ........................ (2)
(1) নং থেকে (2) নং বিয়োগ করে পাই,
a + md - d = n
a + nd - d = m
md - nd = n - m
বা, d (m - n) = n - m
বা, d = - (m - n)/(m - n)
∴ d = - 1
∴ ধারাটির সাধারণ অন্তর = - 1
0
Updated: 1 month ago
0.3 + 0.03 + 0.003 + ................. ধারাটির অসীম পদের সমষ্টি কত?
Created: 1 month ago
A
2/3
B
1/4
C
1/3
D
3/2
প্রশ্ন: 0.3 + 0.03 + 0.003 + ................. ধারাটির অসীম পদের সমষ্টি কত?
সমাধান:
দেওয়া আছে,
ধারাটির প্রথম পদ, a = 0.3 = 3/10
সাধারণ অনুপাত, r = 0.03/0.3
= 3/30
= 1/10
∴ গুণোত্তর ধারার অসীম পদের সমষ্টি = a/(1 - r)
= (3/10)/{1 - (1/10}
= (3/10)/{(10 - 1)/10}
= (3/10)/(10/9)
= (3/10)/(9/10)
= 1/3
0
Updated: 1 month ago