How many words can be formed by using the letters from the word 'DRIVER' such that all the vowels are never together?


A

520


B

280


C

320


D

240


উত্তরের বিবরণ

img

Question: How many words can be formed by using the letters from the word 'DRIVER' such that all the vowels are never together?

Solution:
We assume all the vowels to be a single character, i.e., 'IE' is a single character.
So, now we have 5 characters in the word, namely, D, R, V, R, and IE.

But, R occurs 2 times.
Number of possible arrangements = 5!/2! = 60

Now, 
​the two vowels can be arranged in 2! = 2 ways.

Total number of possible words such that the vowels are always together = 60 × 2 = 120

Total number of possible words = 6!/2! = 720/2 = 360

Therefore, the total number of possible words such that the vowels are never together = 360 - 120 = 240

Unfavorite

0

Updated: 18 hours ago

Related MCQ

একটি নষ্ট ঘড়ি সপ্তাহে কতবার সঠিক সময় দেয়?

Created: 3 weeks ago

A

৭ বার

B

১২ বার

C

১৪ বার

D

২৮ বার

Unfavorite

0

Updated: 3 weeks ago

AMERICA শব্দটির বর্ণগুলোকে একত্রে নিয়ে বিন্যাস সংখ্যা, CALCUTTA  শব্দটির বর্ণগুলো একত্রে নিয়ে বিন্যাস সংখ্যার কত গুণ?


Created: 1 week ago

A

3 গুণ


B

4 গুণ


C

1/2 গুণ 


D

1/3 গুণ

Unfavorite

0

Updated: 1 week ago

A bag contains 5 black and 6 white balls; two balls are drawn at random. What is the probability that the balls drawn are white?


Created: 18 hours ago

A

7/8


B

3/11


C

5/12


D

9/19


Unfavorite

0

Updated: 18 hours ago

© LXMCQ, Inc. - All Rights Reserved

Developed by WiztecBD