A
5/6
B
1/2
C
1/4
D
2/3
উত্তরের বিবরণ
সমাধান:
দেওয়া আছে,
P(A) = 1/3, P(B) = 1/4
আমরা জানি,
P(A ∪ B) = P(A) + P(B) - P(A ∩ B) ........(১)
এবং স্বাধীন ঘটনার জন্য,
P(A ∩ B) = P(A) × P(B)
∴ P(A ∪ B) = P(A) + P(B) - P(A) × P(B)
= (1/3) + (1/4) - {(1/3) × (1/4)}
= (7/12) - (1/12)
= (7 - 1)/12
= 6/12
= 1/2

0
Updated: 1 day ago
BANANA শব্দটির অক্ষরগুলো কত প্রকারে সাজানো যায়, যখন N গুলো একত্রে থাকবে না?
Created: 2 weeks ago
A
30
B
40
C
60
D
20
গণিত
পরিসংখ্যান (Statistics)
বিন্যাস (Permutation)
বীজগণিত (Algebra)
সমাবেশ (Combination)
সম্ভাব্যতা (Probability)
সেট (Set)
No subjects available.
প্রশ্ন: BANANA শব্দটির অক্ষরগুলো কত প্রকারে সাজানো যায়, যখন N গুলো একত্রে থাকবে না?
সমাধান:
BANANA শব্দে মোট অক্ষর = 6টি।
এখানে A তিনবার এবং N দুইবার করে এসেছে।
∴ মোট বিন্যাস = 6!/(3! × 2!)
= 720 / (6 × 2)
= 720 / 12
= 60
এখন,
দুটি N একত্রে থাকলে অক্ষরগুলো হয়:
NN, B, A, A, A (মোট ৫টি একক, যেখানে A তিনবার আছে)।
∴ বিন্যাস = 5!/3!
= 120 / 6
= 20
∴ N একত্রে না থাকার বিন্যাস সংখ্যা = 60 - 20
= 40

0
Updated: 2 weeks ago
যদি সেট A = {5, 15, 20, 30} এবং B = {3, 5, 15, 18, 20} হয়, তবে নিচের কোনটি A ∩ B নির্দেশ করবে?
Created: 3 weeks ago
A
{3, 18, 30}
B
{3, 5, 15, 18, 20, 30}
C
{5, 15, 20}
D
কোনোটিই নয়
প্রশ্ন: যদি সেট A = {5, 15, 20, 30} এবং B = {3, 5, 15, 18, 20} হয়, তবে নিচের কোনটি A ∩ B নির্দেশ করবে?
সমাধান:
দেওয়া আছে
A = {5, 15, 20, 30}
B = {3, 5, 15, 18, 20}
এখন
A ∩ B = {5, 15, 20, 30} ∩ {3, 5, 15, 18, 20}
={5, 15, 20}

0
Updated: 3 weeks ago
একটি ক্লাসে
২৫০ জন শিক্ষার্থীর মধ্যে কোনো পরীক্ষায় ১৫০ জন পদার্থবিজ্ঞানে, ১৭০ জন রসায়নে এবং
১২০ জন উভয় বিষয়ে পাস করেছে। কতজন শিক্ষার্থী উভয় বিষয়ে ফেল করেছে?
Created: 4 days ago
A
৪৫ জন
B
৫০ জন
C
৪০ জন
D
৬০ জন
প্রশ্ন: একটি ক্লাসে ২৫০ জন শিক্ষার্থীর মধ্যে কোনো পরীক্ষায় ১৫০ জন পদার্থবিজ্ঞানে, ১৭০ জন রসায়নে এবং ১২০ জন উভয় বিষয়ে পাস করেছে। কতজন শিক্ষার্থী উভয় বিষয়ে ফেল করেছে?
সমাধান:
মোট শিক্ষার্থী = ২৫০ জন
শুধুমাত্র পদার্থবিজ্ঞানে পাস করেছে = (১৫০ - ১২০) জন = ৩০ জন
শুধুমাত্র রসায়নে পাস করেছে = (১৭০ - ১২০) জন = ৫০ জন
যেকোনো একটি বা উভয় বিষয়ে পাস করেছে এমন শিক্ষার্থীর সংখ্যা
= (৩০ + ৫০ + ১২০) জন = ২০০ জন
উভয় বিষয়ে ফেল করেছে এমন শিক্ষার্থীর সংখ্যা
= (মোট শিক্ষার্থী - যেকোনো একটি বা উভয় বিষয়ে পাস করা শিক্ষার্থী)
= (২৫০ - ২০০) জন = ৫০ জন
সুতরাং, ৫০ জন শিক্ষার্থী উভয় বিষয়ে ফেল করেছে।

0
Updated: 4 days ago